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Tribute to Sir Ronald Fisher
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Nowadays ...

we have machines that collect data, process the information, and
send information to other machines ...
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Data Never Sleeps ...
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The New Numbers ...



8/71

Motivation Data Streams Basic Methods Illustrative Applications References

The Fourth Industrial Revolution ...



9/71

Motivation Data Streams Basic Methods Illustrative Applications References

Internet of Things ...
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IoT...
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IoT ...
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Scenario

Electrical power Network: Sen-
sors all around network monitor
measurements of interest.
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Scenario

Sensors produce continuous flow of data at high speed:

Send information at different time scales;
Act in adversary conditions: they are prone to noise, weather
conditions, battery conditions, etc;

Huge number of Sensors, variable along time

Geographic distribution:

The topology of the network and the position of the sensors
are known.



14/71

Motivation Data Streams Basic Methods Illustrative Applications References

Illustrative Learning Tasks:

Cluster Analysis

Identification of Profiles: Urban, Rural, Industrial, etc.

Predictive Analysis

Predict the value measured by each sensor for different time
horizons.
Prediction of peaks on the demand.

Monitoring Evolution
Change Detection

Detect changes in the behavior of sensors;
Detect Failures and Abnormal Activities;

Extreme Values, Anomalies and Outliers Detection

Identification of peaks on the demand;
Identification of critical points in load evolution;
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Standard Approach:

This problem has been addressed time ago:

Strategy

Select a finite sample

Generate a static model (cluster structure, neural nets,
Kalman filters, Wavelets, etc)

Very good performance in next month!

Six months later: Retrain everything!

What is the Problem?

The world is not static!
Things change over time.
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The Data Stream Phenomenon

Highly detailed, automatic, rapid data feeds.

Radar: meteorological observations.
Satellite: geodetics, radiation,.
Astronomical surveys: optical, radio,.
Internet: traffic logs, user queries, email, financial,
Sensor networks: many more observation points ...

Most of these data will never be seen by a human!

Need for near-real time analysis of data feeds.

Monitoring, intrusion, anomalous activity Classification,
Prediction, Complex correlations, Detect outliers, extreme
events, etc
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Data Streams

Continuous flow of data generated at high-speed in Dynamic,
Time-changing environments.
The usual approaches for querying, clustering and prediction use
batch procedures cannot cope with this streaming setting.
Machine Learning algorithms assume:

Instances are independent and generated at random according
to some probability distribution D.

It is required that D is stationary

Practice: finite training sets, static models.
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Data Streams

We need to maintain Decision models in real time.
Decision Models must be capable of:

incorporating new information at the speed data arrives;

detecting changes and adapting the decision models to the
most recent information.

forgetting outdated information;

Unbounded training sets, dynamic models.
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Data Streams Models

Continuous flow of data generated at high-speed in Dynamic,
Time-changing environments.
The input elements a1, a2, . . . , aj , . . . arrive sequentially, and
describe an underlying function A:

1 Insert Only Model: once an element ai is seen, it can not be
changed;

2 Insert-Delete Model: elements ai can be deleted or updated.

The domain of variables can be huge.
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DBMS / DSMS

Data Base Management Sys-
tems

Persistent relations

One-time queries

Random access

Access plan determined
by query processor and
physical DB design

Data Streams Management
Systems

Transient streams (and
persistent relations)

Continuous queries

Sequential access

Unpredictable data
characteristics and arrival
patterns
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Traditional / Stream Processing

Traditional Stream

Nr. of Passes Multiple Single

Processing Time Unlimited Restricted

Memory Usage Unlimited Restricted

Type of Result Accurate Approximate

Distributed No Yes
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Puzzle: the missing number

Puzzle: Finding Missing Numbers

Let π be a permutation of {1, . . . , n}.
Let π−1 be π with one element missing.

π−1[i ] arrives in increasing order

Task: Determine the missing number
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Puzzle: the missing number

Puzzle: Finding Missing Numbers

Let π be a permutation of {1, . . . , n}.
Let π−1 be π with one element missing.

π−1[i ] arrives in increasing order

Task: Determine the missing number

Naive Solution:
Use a n-bit vector to memorize all the numbers (O(n) space)
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Puzzle: the missing number

Puzzle: Finding Missing Numbers

Let π be a permutation of {1, . . . , n}.
Let π−1 be π with one element missing.

π−1[i ] arrives in increasing order

Task: Determine the missing number

Streaming Solution:
Use O(log(n)) space, or less
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Puzzle: the missing number

Puzzle: Finding Missing Numbers

Let π be a permutation of {1, . . . , n}.
Let π−1 be π with one element missing.

π−1[i ] arrives in increasing order

Task: Determine the missing number

Solution:

Maintain s =
∑i

1(π−1[i ])

Return: n × (n + 1)/2−
∑i

1(π−1[i ])
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Massive Data Sets

Data analysis is complex, interactive, and exploratory over
very large volumes of historic data.

Traditional pattern discovery process requires on-line ad-hoc
queries, not previously defined, that are successively refined.

Due to the exploratory nature of these queries, an exact
answer may not be required. A user may prefer a fast
approximate answer.
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Massive Data Sets
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Approximate Answers

Approximate answers:

Actual answer is within 5± 1 with probability ≥ 0.9.

Approximation: find an answer correct within some factor

Find an answer that is within 10% of correct result
More generally, a (1± ε) factor approximation

Randomization: allow a small probability of failure

Answer is correct, except with probability 1 in 1000
More generally, success probability (1− δ)

Approximation and Randomization: (ε, δ)-approximations

The constants ε and δ have great influence in the space used.
Typically the space is O(1/ε2log(1/δ)).
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An Illustrative Example: Count-Min Sketch

Cormode & Muthukrishnan. An improved data stream summary: The

count-min sketch and its applications. Journal of Algorithms, 2005.

Used to approximately solve: Point Queries, Range Queries, Inner
Product queries.

Simple sketch idea

Creates a small summary as an array of w × d in size
W = 2/ε, d = log(1/δ)

Use d hash functions to map vector entries to [1..w ]

Works on Insert-only and Insert-Delete model streams

W = 2/ε, d = log(1/δ)
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Count-Min Sketch

Example: Count the number of packets from the set of IPs that
cross a server in a network.

CM Sketch Update

Update:
Each entry in vector x is mapped to one cell per row. Increment
the corresponding counter: CM[k , hk(j)]+ = 1.
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Count-Min Sketch

Example: Count the number of packets from the set of IPs that
cross a server in a network.

CM Sketch Query

Query: How many packets from IP j?
Estimate x̂ [j ] by taking minkCM[k , hk(j)]

The estimate guarantees:

x [j ] ≤ x̂ [j ]

x̂i ≤ ε× ||xi ||1, with probability 1− δ.
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Time Windows

Instead of computing statistics over all the stream ...

use only the most recent data points.

Most recent data is more relevant than older data

Several Window Models: Landmark, Sliding, Tilted
Windows.

time based
sequence based
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Landmark Windows

The recursive version of the sample mean:

x̄i =
(i − 1)× x̄i−1 + xi

i
(1)

Incremental version of the standard deviation:

σi =

√∑
x2
i −

(
∑

xi )
2

i

i − 1
(2)

Recursive correlation coefficient.

corr(x , y) =

∑
(xi × yi )−

∑
xi×

∑
yi

n√∑
x2
i −

∑
x2i
n

√∑
y 2
i −

∑
y2i
n

(3)
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Sliding Windows

Computing these statistics over sliding windows:
requires to maintain all the observations inside the window.

Simple Moving Average:

SMAt =
(xt + xt−1 + . . .+ xt−(n−1))

n
where n is the window size

Weighted moving average
use multiplicative factors to give different weights to different data points

WMAt =
nxt + (n − 1)xt−1 + · · ·+ 2xt−n+2 + xt−n+1

n + (n − 1) + · · ·+ 2 + 1
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Sliding Windows

Maintaining Stream Statistics over Sliding Windows,
M.Datar, A.Gionis, P.Indyk, R.Motwani; ACM-SIAM;2002
The basic idea:

Use buckets of exponentially growing size (20, 21, 22 . . . 2h) to hold the
data

Each bucket has a time-stamp associated with it

It is used to decide when the bucket is out of the window

Data Structures for Exponential Histograms:

Buckets: counts and time stamp

LAST: stores the size of the last bucket.

TOTAL: keeps the total size of the buckets.
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Exponential Histograms

When a new data element arrives:

Create a new bucket of size 1 with the current time-stamp, and increment
the counter TOTAL.

Given a relative error,ε, if there are |1/ε|/2 + 2 buckets of the same size,
merge the oldest two of the same-size into a single bucket of double size.

The larger time-stamp of the two buckets is then used as the time-stamp
of the newly created bucket.

Whenever we want to estimate the moving sum:

Check if the oldest bucket is within the sliding window.

If not, we drop that bucket and subtract its size from the variable TOTAL

Repeat the procedure until all the buckets with timestamps outside of the
sliding window are dropped.

The estimate of 1’s in the sliding window is TOTAL-LAST/2.
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Exponential Histograms: Example

Count the number of 1’s in a sliding window
Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Element 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0

Window length=10;

Relative Error ε = 0.5;

Merge if |1/0.5|/2 + 2 = 3 buckets of the same size.
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Exponential Histograms: Example

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Element 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0

Window length=10;

Relative Error ε = 0.5 Merge if 3 buckets of the same size.

Time = 1, x = 1

EH: 11
TOTAL: 1
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Exponential Histograms: Example

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Element 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0

Window length=10;

Relative Error ε = 0.5 Merge if 3 buckets of the same size.

Time = 2, x = 1

EH: 11 12
TOTAL: 2
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Exponential Histograms: Example

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Element 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0

Window length=10;

Relative Error ε = 0.5 Merge if 3 buckets of the same size.

Time = 3, x = 1

EH: 11 12 13
TOTAL: 3
Merge
EH: 22 13
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Exponential Histograms: Example

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Element 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0

Window length=10;

Relative Error ε = 0.5 Merge if 3 buckets of the same size.

Time = 4, x = 1

EH: 22 13 14
TOTAL: 4
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Exponential Histograms: Example

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Element 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0

Window length=10;

Relative Error ε = 0.5 Merge if 3 buckets of the same size.

Time = 5, x = 0

EH: 22 13 14
TOTAL: 4
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Exponential Histograms: Example

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Element 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0

Window length=10;

Relative Error ε = 0.5 Merge if 3 buckets of the same size.

Time = 6, x = 1

EH: 22 13 14 16
TOTAL: 5
Merge
EH: 22 24 16
TOTAL: 5
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Exponential Histograms: Example

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Element 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0

Window length=10;

Relative Error ε = 0.5 Merge if 3 buckets of the same size.

Time = 7, x = 0

EH: 22 24 16
TOTAL: 5
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Exponential Histograms: Example

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Element 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0

Window length=10;

Relative Error ε = 0.5 Merge if 3 buckets of the same size.

Time = 8, x = 1

EH: 22 24 16 18
TOTAL: 6
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Exponential Histograms: Example

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Element 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0

Window length=10;

Relative Error ε = 0.5 Merge if 3 buckets of the same size.

Time = 9, x = 1

EH: 22 24 16 18 19
TOTAL: 7
Merge
EH: 44 28 19
TOTAL: 7
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Exponential Histograms: Example

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Element 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0

Window length=10;

Relative Error ε = 0.5 Merge if 3 buckets of the same size.

Time = 10, x = 1

EH: 44 28 19 110
TOTAL: 8
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Exponential Histograms: Example

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Element 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0

Window length=10;

Relative Error ε = 0.5 Merge if 3 buckets of the same size.

Time = 11, x = 1

EH: 44 28 210 111
TOTAL: 9
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Exponential Histograms: Example

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Element 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0

Window length=10;

Relative Error ε = 0.5 Merge if 3 buckets of the same size.

Time = 12, x = 1

EH: 44 28 210 111 112
TOTAL: 10
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Exponential Histograms: Example

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Element 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0

Window length=10;

Relative Error ε = 0.5 Merge if 3 buckets of the same size.

Time = 13, x = 1

EH: 44 410 212 113
TOTAL: 11
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Exponential Histograms: Example

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Element 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0

Window length=10;

Relative Error ε = 0.5 Merge if 3 buckets of the same size.

Time = 14, x = 1

EH: 44 410 212 113 114
TOTAL: 12
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Exponential Histograms: Example

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Element 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0

Window length=10;

Relative Error ε = 0.5 Merge if 3 buckets of the same size.

Time = 15, x = 0

EH: 44 410 212 113 114
TOTAL: 12
Removing outdated buckets
EH: 410 212 113 114
TOTAL: 8
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Time Data Buckets Total Last
T1 1 11 1 1
T2 1 11, 12 2 1
T3 1 11, 12, 13 3 1
(merge) 22, 13 3 2
T4 1 22, 13, 14 4 2
T5 0 22, 13, 14 4 2
T6 1 22, 13, 14, 16 5 2

22, 24, 16 5 2
T7 0 22, 24, 16 5 2
T8 1 22, 24, 16, 18 6 2
T9 1 22, 24, 16, 18, 19 7 2

44, 28, 19 7 4
T10 1 44, 28, 19, 110 8 4
T11 1 44, 28, 210, 111 9 4
T12 1 44, 28, 210, 111, 112 10 4
T13 1 44, 410, 212, 113 11 4
T14 1 44, 410, 212, 113, 114 12 4
(Removing outdated)
T15 0 410, 212, 113, 114 8 4
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Exponential Histograms: Analysis

The size of the buckets grows exponentially: 20, 21, 22 . . . 2h

Need only O(logN) buckets.

It is shown that, for N 1’s in the sliding window, we only need
O(logN/ε) buckets to maintain the moving sum.

The error in the oldest bucket only.

The moving sum is proven to be bounded within the given
relative error, ε.
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Sampling

To obtain an unbiased sampling of the data, we need to know the
length of the stream.
In Data Streams, we need to modify the approach!
When and How often should we sample?

Strategy

Sample instances at periodic time intervals

Useful to slow down data.

Involves loss of information.

Methods

Reservoir Sampling, Vitter, 1985

Min-Wise Sampling, Broder, et al., 00
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The reservoir Sample Technique

Vitter, J.; Random Sampling with a Reservoir, ACM, 1985.

Creates uniform sample of fixed size k ;

Insert first k elements into sample

Then insert ith element with prob. pi = k/i

Delete an instance at random.
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Analysis

Analyze the simplest case: sample size m = 1

Probability i’th item is the sample from a stream length n:

1
2 ×

2
3 . . .×

i
i+1 × . . .×

n−2
n−1 ×

n−1
n

= 1/n
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Analysis

Known Problems

Low probability of detecting:

Changes

Anomalies

Hard to parallelize
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Illustrative Problem I

Consider a high-speed stream of 0’s and 1’s

Continuous query problem:
Have we seen more 0s or 1s?
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Illustrative Problem II

A (real) data warehouse problem

Suppose you have a retail data warehouse

3 TB of data

100s GB new sales records updated daily

Millions of different items

Problem: hot-list

Identify hot items: the top-20 items in popularity
Restricted memory: Can have a memory of 100s-1000s bytes only
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Illustrative Examples

We see a large number of individual transactions.

What are the top sellers today?

We are monitoring network traffic.

Which hosts/subnets are responsible for most of the traffic?

We have a network of satellites monitoring events over large
areas.

Which areas are experiencing the most activity over a week /
day /hour?
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The Top-k Elements Problem

Count the top-K most frequent elements in a stream.

First Approach

Maintain a count for each element of the alphabet.
Return the k first elements in the sorted list of counts.

Problems

Exact and Efficient solution for small alphabets.
Large alphabets: Space inefficient – large number of zero counts.
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The Space Saving Algorithm

Metwally, D. Agrawal, A. Abbadi, Efficient Computation of Frequent and Top-k

Elements in Data Streams, ICDT 2005

Maintain partial information of interest; monitor only a subset m
of elements.

For each element e in the stream

If e is monitored: Increment Counte
Else

Let em be the element with least hits min.
Replace em with e with counte = min + 1
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The Space Saving Algorithm: Properties

Efficient for skewed data!

Ensures no false negatives are kept in the top-k list:
no non frequent item is in the top-k list.

It allows false positive in the list:
some non frequent items appear in the list.

If the popular elements evolve over time, the elements that
are growing more popular will gradually be pushed to the top
of the list.
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Illustrative Problem III

Air Quality Monitoring

Sensors monitoring the concentration of air pollutants.

Each sensor holds a data vector comprising measured
concentration of various pollutants (CO2, SO2, O3, etc.).

A function on the average data vector determines the Air
Quality Index (AQI)

Issue an alert in case the AQI exceeds a given threshold.
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Distributed Monitoring:

Given:

A function over the average of the data vectors
A predetermined threshold

Continuous Query: Alert when function crosses the threshold

Goal: Minimize communication during query execution
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Example: Geometric Approach

I. Sharfman, A. Schuster, D. Keren, A Geometric Approach to
Monitoring Distributed DataStreams, SIGMOD 2006

Geometric Interpretation:

Each node holds a statistics
vector
Coloring the vector space :

Grey:
function > threshold
White:
function ≤ threshold

Goal: determine color of global
data vector (average).
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Monitoring Threshold Functions
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The Bounding Theorem

A reference point is known to all
nodes

Each vertex constructs a sphere

Theorem: convex hull is
bounded by the union of spheres

Local constraints!
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Basic Algorithm

An initial estimate vector is calculated;

Nodes compute spheres and check its
color;

Drift vector is the diameter of the
sphere

If any sphere non monochromatic:
node triggers re-calculation of
estimate vector
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Monitoring Threshold Functions
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Analysis

Mostly Local Computations

Minimum communications



62/71

Motivation Data Streams Basic Methods Illustrative Applications References

Outline

1 Motivation

2 Data Streams
Approximate Answers
Count-Min Sketch

3 Basic Methods
Estimating statistics over windows
Sampling

4 Illustrative Applications
Toy Problem
Hot-Lists
Distributed Streams

5 References



63/71

Motivation Data Streams Basic Methods Illustrative Applications References

Software

Massive Online Analysis:
http://moa.cms.waikato.ac.nz/
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Software

scikit-multiflow is an open source machine learning framework for
multi-output/multi-label and stream data.
https://scikit-multiflow.github.io/
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Software - RIVER

A Python package for online/streaming machine learning
https://riverml.xyz/
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Resources

Massive Data Analysis
http://dimacs.rutgers.edu/∼graham/
Distributed Data Mining
Maintained by Hillol Kargupta

UCR Time-Series Data Sets
Maintained by Eamonn Keogh, UCR, US
http://www.cs.ucr.edu/∼eamonn/time series data

Mining Data Streams Bibliography
Maintained by Mohamed Gaber
http://www.csse.monash.edu.au/∼mgaber/
WResources.html
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Data Stream Management Systems

Niagara (OGI/Wisconsin) – Internet XML databases

Aurora (Brown/MIT) – sensor monitoring, dataflow
http://www-db.stanford.edu/sdt

Stream (Stanford) – general-purpose DSMS
http://www-db.stanford.edu/stream/index.html

COUGAR (Cornell)

GigaScope and Hancock (At&T)

Medusa (Brown University)
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