Categorical Data Analysis and Visualisation

Part III: Multi-way Contingency Tables

Rosaria Lombardo Department of Economics, University of Campania "Luigi Vanvitelli", Italy rosaria.lombardo@unicampania.it

Eric J. Beh University of Wollongong, Wollongong, Australia, Stellenbosch University, Stellenbosch, South Africa <u>ericb@uow.edu.au</u>

Multiple Correspondence Analysis

- Indicator table
- Burt table

Multiple Correspondence Analysis

So far we have confined our attention to the case where we are graphically summarising the association between two categorical variables.

In the case where we have three categorical variables, we focus on understanding the association between the rows, columns and tubes.

For more than three categorical variables, the depiction can become very messy for categorical visualisation.

When we have multiple categorical variables, we can perform a correspondence analysis by coding the variables in a number of ways. We can

- derive the *indicator table* form of the data
- derive the *Burt table* form of the data

Introduction to Multi-way Tables

3

• perform a joint correspondence analysis, stacking and concatenation

By recoding the contingency table, we perform *multiple correspondence analysis* (MCA)

Indicator Matrix

Any sized contingency table can be coded

using an *indicator table*, denoted by **Z**. Suppose we wish to perform a

correspondence analysis on our two-way

table using its indicator matrix, **Z**.

Z is formed by concatenating two submatrices (one for each variable) such that

 $\mathbf{Z} = [\mathbf{Z}_1 \ \mathbf{Z}_2]$

Each row of the indicator matrix represents how each individual is classified into the categories.

For the first variable, \mathbf{Z}_1 consists of only the elements 1 and 0; 1 where the individuals has a characteristic, 0 where it doesn't.

Z ₁ =	$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0$	0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\mathbf{Z}_2 =$	$\begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\$	0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1 0	$ \begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1\\ 0\\ 0\\ 0\\ 1\\ \end{array} $	
	$\begin{pmatrix} 0\\0\\0 \end{pmatrix}$	0 0 0	$\begin{pmatrix} 1\\1\\1 \end{pmatrix}$		0 0 0	1 0 0	$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$	

	Indicator M	atrix							
Multiple Correspondence Analysis	Therefore, for an \mathbf{M} – way contingency table of size $I_1 \times I_2 \times \ldots \times I_M \ldots$ \ldots that cross classifies n individuals or units, its indicator table form is of dimension $n \times \left(\sum_{m=1}^{M} I_m\right)$ For example, and $I \times J$ contingency table has an indicator table of dimension $n \times (I + J)$ One way to perform multiple correspondence analysis is to perform simple correspondence analysis on the indicator table	$\mathbf{Z}_1 =$	$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	Z ₂ =	$\begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0$	0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\$

Analysis	
Correspondence	
Multiple	

	Example: Naples Hospital Data													
	The Indicator	table												
	> indicator.ex	e (nap	les.	dat)[c((1,1	0,20),30	,40	,50,	,100	,15	0,300),500),]
vsis		S1	S2	s3	S4	C1	C2	C3	C4	Q1	Q2	Q3	Q4)
nal	Individual 1	1	. 0	0	0	1	0	0	0	1	0	0	0	
e A	Individual 1	0 1	. 0	0	0	1	0	0	0	1	0	0	0	
suc	Individual 20	0 1	. 0	0	0	1	0	0	0	0	1	0	0	
nde	Individual 3	0 1	. 0	0	0	1	0	0	0	0	1	0	0	
ods	Individual 4	0 1	. 0	0	0	1	0	0	0	0	0	0	1	
rre	Individual 50		. 0	0	0	0	1	0	0	0	0	1	0	
ů	Individual 1		1	0	0	1	0	0	0	0	0	1	0	
ple	Individual 1	50 0		1	0		1	0	0	0	0	0	1	
ulti	Individual 5			1	1	1	T T	0	0	0	0	0	1	
Ż	Individual St	00 0	0	0	T	1	0	0	0	0	0	0	T	
			Z	1			Z	2				Z ₃)
		S	atisfa	actio	n		Clea	nline	ess		Ç	Quali	ity	
10	Function indica	tor.	exe () ap	pear	s at t	he er	nd of	thes	e sli	des (App	endix	A)

				Exa	mple	e: Na	aples	Ho	spita	1 D	ata			
	The	Bui	rt tab	le										
	> k	ourt	t.exe	e (nap	ples	.dat)							
IS.		S1	S2	S3	S4	C1	C2	С3	C4	Q1	Q2	Q3	Q4	
alys	S1	64	0	0	0	40	12	5	7	21	23	10	10	
Ani	S2	0	12	0	0	54	39	24	12	13	44	20	52	
JCe	S3	0	L	J I 9	0	85	31	46	137	8	15	136	140	
Ider	S4	0	0	0	557	17	35	104	401	7	8	28	514	
pon	C1	40	54	85	17	196	0	0	0	26	46	50	74	
res.	C2	12	39	31	35	0	11	0	0	8	11	28	70	
Col	С3	5	24	46	104	0	I	J 9	0	8	20	19	132	
ole	C4	7	12	137	401	0	0	0	557	7	13	97	440	
ultij	Q1	21	13	8	7	26	8	8	7	49	0	0	0	
Ŕ	Q2	23	44	15	8	46	11	20	13	0	91	n	0	
	Q3	10	20	136	28	50	28	19	97	0	1	$\boldsymbol{\nu}_{\mathrm{K}}$	0	
	Q4	10	52	140	514	74	70	132	440	0	0	0	716	
15	Fun	ction	burt	.exe	() app	ears at	the end	d of the	ese slid	es (A	ppen	idix B)		R

	Example: Naples Hospital Data													
	The	Bui	rt tab	le										
	> k	ourt	c.exe	e (nap	ples.	.dat)								
is.		S1	S2	S3	S4	C1	C2	С3	C4	Q1	Q2	Q3	Q4	
alys	S1	64	0	0	0	40	12	5	7	21	23	10	10	
Ana	S2	0	129	0	0	54		J	12	13	4 N	J	52	
JCe	S3	0	0	299	0	85	1 I I	∎IJ	137	8	1	٩IK	140	
Ider	S4	0	0	0	557	17	35	104	401	7	8	28	514	
pon	C1	40	54	85	17	196	0	0	0	26	46	50	74	
res	C2	12	3	JT	35	0	117	0	0	8	1	J	70	
Col	С3	5	2 1	∎IJ	104	0	0	179	0	8	2	٩JK	132	
ple	C4	7	12	131	401	0	0	0	557	7	ĹΔ	91	440	
ultij	Q1	21	13	8	7	26	8	8	7	49	0	0	0	
Ž	Q2	23	4 N	JT	8	46	N	JT	13	0	90	0	0	
	Q3	10	2 IV	IK	28	50	1	JK	97	0	0	194	0	
	Q4	10	52	14U	514	74	1 U	13Z	440	0	0	0	716	

Function burt.exe() appears at the end of these slides (Appendix B)

Multi-way Correspondence Analysis & Symmetric Association

- Partitioning Pearson's Statistic,
- Tucker3 Decomposition,
- Interactive Biplots

Pearson's Chi-squared Statistic

For three *symmetrically* associated categorical variables that are cross-classified to form a three-way contingency table define the *Pearson residuals* by

$$\pi_{ijk} = \frac{p_{ijk}}{p_{i \bullet \bullet} p_{\bullet j \bullet} p_{\bullet \bullet k}} - 1$$

Then Pearson's three-way chi-squared statistic is

$$X^{2} = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{K=1}^{K} \frac{(p_{ijk} - p_{i \cdot \cdot} p_{\cdot j \cdot} p_{\cdot \cdot k})^{2}}{p_{i \cdot \cdot \cdot} p_{\cdot j \cdot} p_{\cdot \cdot \cdot k}}$$
$$= \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{K=1}^{K} p_{i \cdot \cdot} p_{\cdot j \cdot} p_{\cdot \cdot \cdot k} \left(\frac{p_{ijk}}{p_{i \cdot \cdot} p_{\cdot j \cdot} p_{\cdot \cdot \cdot k}} - 1 \right)^{2}$$
$$= \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{K=1}^{K} p_{i \cdot \cdot} p_{\cdot j \cdot} p_{\cdot \cdot \cdot k} \pi_{ijk}^{2}$$

Multi-Way Correspondence Analysis

- To formally test whether there is an (symmetric) association between the row, column, and tubes variables we perform a *chi-squared test of independence*
- Pearson's chi-squared statistic is . . .

$$X^{2} = n \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} \frac{\left(p_{ijk} - p_{i \cdot \cdot} p_{\cdot j \cdot} p_{\cdot \cdot k}\right)^{2}}{p_{i \cdot \cdot} p_{\cdot j \cdot} p_{\cdot \cdot k}}$$

... and has a chi-squared random variable with

$$(I-1)(J-1) + (I-1)(K-1) + (J-1)(K-1) + (I-1)(J-1)(K-1)$$

degrees of freedom.

Multi-Way Correspondence Analysis

For three *symmetrically* associated categorical variables that are cross-classified to form a three-way contingency table define the *Pearson residuals* by

$$\pi_{ijk} = \frac{p_{ijk}}{p_{i \bullet \bullet} p_{\bullet j \bullet} p_{\bullet \bullet k}} - 1$$

To perform a multi-way correspondence analysis on a three-way contingency table we resort to using two three-way analogues of SVD

Multi-Way Correspondence Analysis

- Developed by Tucker (1963) . . . elaborated upon by Tucker (1964, 1966)
- See also Kroonenberg (1983, 2008), Paatero & Andersson (1999), Bro & Kiers (2003), Kiers (2004), Pravdova, Estienne, Walczak & Massart (2001), Beh & Lombardo (2014, 2021) and many others

For three *symmetrically* associated categorical variables that are cross-classified to form a three-way contingency table define the *Pearson residuals* by

$$\pi_{ijk} = \frac{p_{ijk}}{p_{i \bullet \bullet} p_{\bullet j \bullet} p_{\bullet \bullet k}} - 1$$

To perform a multi-way correspondence analysis on a three-way contingency table we resort to using two three-way analogues of SVD

Tucker3 Decomposition

Multi-Way Correspondence Analysis

25

Multi-Way Correspondence Analysis

26

$$\widehat{\pi}_{ijk} = \sum_{p=1}^{P} \sum_{q=1}^{Q} \sum_{r=1}^{R} a_{ip} b_{jq} c_{kr} \lambda_{pqr}$$

Choose a P, Q and R that minimises...not easy the solution are not nested (ALS algorithm)... $SSE = \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} p_{i \bullet \bullet} p_{\bullet j \bullet} p_{\bullet \bullet k} (\pi_{ijk} - \widehat{\pi}_{ijk})^2$

Decomposing Pearson's Residuals

For three *symmetrically* associated categorical variables that are cross-classified to form a three-way contingency table define the *Pearson residuals* by

$$\pi_{ijk} = \frac{p_{ijk}}{p_{i \bullet \bullet} p_{\bullet j \bullet} p_{\bullet \bullet k}} - 1$$

To perform a multi-way correspondence analysis on a three-way contingency table we resort to using two three-way analogues of SVD

Tucker3 Decomposition

$$\widehat{\pi}_{ijk} = \sum_{p=1}^{P} \sum_{q=1}^{Q} \sum_{r=1}^{R} a_{ip} b_{jq} c_{kr} \lambda_{pqr}$$

Choose a P, Q and R...

Deviance Plot: A measure of goodness of fit on y-axis and the degree of freedom on xaxis- select a model on or close to an elbow in the higher boundary of the convex hull (Timmerman, Kiers 2000; Ceulemans, Kiers, 2006; Lombardo, van de Velden, Beh 2022)

For three symmetrically associated categorical variables that are cross-classified to form a three-way contingency table define the Pearson residuals by

$$\pi_{ijk} = \frac{p_{ijk}}{p_{i \bullet \bullet} p_{\bullet j \bullet} p_{\bullet \bullet k}} - 1$$

To perform a multi-way correspondence analysis on a three-way contingency table we resort to using two three-way analogues of SVD

Decomposing Pearson's Residuals

For three symmetrically associated categorical variables that are cross-classified to form a three-way contingency table define the Pearson residuals by

$$\pi_{ijk} = \frac{p_{ijk}}{p_{i \bullet \bullet} p_{\bullet j \bullet} p_{\bullet \bullet k}} - 1$$

To perform a multi-way correspondence analysis on a three-way contingency table we resort to using two three-way analogues of SVD

For three symmetrically associated categorical variables that are cross-classified to form a three-way contingency table define the Pearson residuals by

$$\pi_{ijk} = \frac{p_{ijk}}{p_{i \bullet \bullet} p_{\bullet j \bullet} p_{\bullet \bullet k}} - 1$$

To perform a multi-way correspondence analysis on a three-way contingency table we resort to using two three-way analogues of SVD

Example: Sustainable Development Goals Data

The cross-classification of the three categorical variables (RES, BCA & GEO) that produce the $4 \times 4 \times 6$ contingency table . . .

- RES: indicator of renewable energy share of total final energy consumption
- BCA: an indicator of adjusted emission growth rate for black carbon
- GEO: geographical area

RES		В	CA	
	(0, 8.13]	(8.13, 23.1]	(23.1, 49.7]	(49.7, 96.4]
Africa	BCA1	BCA2	BCA3	BCA4
(0, 34.5]RES1	1	0	4	8
(34.5, 53.7] RES2	0	2	4	19
(53.7, 80.7] RES3	3	2	1	4
(80.7, 100] RES4	1	1	0	1
America				
RES1	1	0	6	2
RES2	0	2	0	1
RES3	0	3	1	0
RES4	1	3	2	1
Asia				
RES1	5	1	2	0
RES2	6	2	3	1
RES3	5	3	3	3
RES4	4	2	0	0
Australia				
RES1	1	0	0	0
RES2	0	1	2	0
RES3	1	1	5	0
RES4	1	0	0	0
Carribean				
RES1	3	2	0	0
RES2	1	1	0	1
RES3	0	0	0	0
RES4	2	3	0	0
Europe				
RES1	1	0	0	0
RES2	0	0	1	0
RES3	0	7	5	0
RES4	3	11	7	3

Example: Sustainable Development Goals Data RES BCA The cross-classification of the three (8.13, 23.1] (23.1, 49.7] (0, 8.13] (49.7, 96.4] categorical variables (RES, BCA & GEO) that produce the $4 \times 4 \times 6$ contingency table . . . Chi-squared test of independence: $X^2 = 290.035$ •

A p-value < 0.001Thus, a statistically significant

association exists between at least two of the variables

Multi-Way Correspondence Analysis

31

...but..

there are other features we'll talk about soon

Africa	BCA1	BCA2	BCA3	BCA4
(0, 34.5]RES1	1	0	4	8
(34.5, 53.7] RES2	0	2	4	19
(53.7, 80.7] RES3	3	2	1	4
(80.7, 100] RES4	1	1	0	1
America				
RES1	1	0	6	2
RES2	0	2	0	1
RES3	0	3	1	0
RES4	1	3	2	1
Asia				
RES1	5	1	2	0
RES2	6	2	3	1
RES3	5	3	3	3
RES4	4	2	0	0
Australia				
RES1	1	0	0	0
RES2	0	1	2	0
RES3	1	1	5	0
RES4	1	0	0	0
Carribean				
RES1	3	2	0	0
RES2	1	1	0	1
RES3	0	0	0	0
RES4	2	3	0	0
Europe				
RES1	1	0	0	0
RES2	0	0	1	0
RES3	0	7	5	0
1				

Example: Sustainable Development Goals Data

Multi-way Correspondence Analysis & Asymmetric Association

- Marcotorchino's Index
- Gray-Williams Index
- Lombardo/Lambda Index

Multi-way Correspondence Analysis & Symmetric Association

Cressie-Read family of Divergence Statistics

Three-way Family of Divergence Statistics

For some δ , the Cressie-Read family of divergence statistics for a three-way contingency table is

$$CR(\delta) = \frac{2n}{\delta(\delta+1)} \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} p_{ijk} \left[\left(\frac{p_{ijk}}{p_{i \bullet \bullet} p_{\bullet j \bullet} p_{\bullet \bullet k}} \right)^{\delta} - 1 \right]$$

where $\delta \in (-\infty, \infty)$. (Pardo, 1996; Lombardo & Beh, 2022)

This is a chi-squared random variable with

$$(I-1)(J-1) + (I-1)(K-1) + (J-1)(K-1) + (I-1)(J-1)(K-1)$$

degrees of freedom.

Three-way Family of Divergence Statistics

For some δ , the Cressie-Read family of divergence statistics for a three-way contingency table is

$$CR(\delta) = \frac{2n}{\delta(\delta+1)} \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} p_{ijk} \left[\left(\frac{p_{ijk}}{p_{i\bullet\bullet}p_{\bullet j\bullet}p_{\bullet \bullet k}} \right)^{\delta} - 1 \right]$$

where $\delta \in (-\infty, \infty)$. (Pardo, 1996; Lombardo & Beh, 2022)

Pearson's chi-squared statistic

$$CR(\delta = 1) = X^{2} = n \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} \frac{\left(p_{ijk} - p_{i \bullet \bullet} p_{\bullet j \bullet} p_{\bullet \bullet k}\right)^{2}}{p_{i \bullet \bullet} p_{\bullet j \bullet} p_{\bullet \bullet k}}$$

Likelihood Ratio Statistic

$$CR(0) = G^{2} = 2n \sum_{i=1}^{J} \sum_{j=1}^{J} \sum_{k=1}^{K} p_{ijk} \ln\left(\frac{p_{ijk}}{p_{i\bullet\bullet} p_{\bullet j\bullet} p_{\bullet \bullet k}}\right)$$

Multi-Way Correspondence Analysis

45

Multi-Way Correspondence Analysis

Three-way Family of Divergence Statistics

For some δ , the Cressie-Read family of divergence statistics for a three-way contingency table is

$$CR(\delta) = \frac{2n}{\delta(\delta+1)} \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} p_{ijk} \left[\left(\frac{p_{ijk}}{p_{i\bullet\bullet} p_{\bullet j\bullet} p_{\bullet \bullet k}} \right)^{\delta} - 1 \right]$$

where $\delta \in (-\infty, \infty)$. (Pardo, 1996; Lombardo & Beh, 2022)

Freeman-Tukey statistic

Multi-Way Correspondence Analysis

47

Multi-Way Correspondence Analysis

48

$$CR\left(-\frac{1}{2}\right) = T^2 = 4n\sum_{i=1}^{I}\sum_{j=1}^{J}\sum_{k=1}^{K}\left(\sqrt{p_{ijk}} - \sqrt{p_{i\bullet\bullet}p_{\bullet j\bullet}p_{\bullet \bullet k}}\right)^2$$

Cressie-Read Statistic

$$CR\left(\frac{2}{3}\right) = CR^2 = \frac{9n}{5} \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} p_{i \bullet \bullet} p_{\bullet j \bullet} p_{\bullet \bullet k} \left(\left(\frac{p_{ijk}}{p_{i \bullet \bullet} p_{\bullet j \bullet} p_{\bullet \bullet k}}\right)^{2/3} - 1 \right)^2$$

Partitioning the Family of Divergence Statistics

Lombardo & Beh (2022) showed that the three-way Cressie-Read divergence statistic can be partitioned as follows

$$CR(\delta) = \frac{2n}{\delta(\delta+1)} \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} p_{ijk} \left[\left(\frac{p_{ijk}}{p_{i \bullet \bullet} p_{\bullet j \bullet} p_{\bullet \bullet k}} \right)^{\delta} - 1 \right]$$

$$= \frac{2n}{\delta(\delta+1)} \sum_{i=1}^{I} \sum_{j=1}^{J} p_{ij \bullet} \left[\left(\frac{p_{ijk}}{p_{i \bullet \bullet} p_{\bullet j \bullet}} \right)^{\delta} - 1 \right] + \frac{2n}{\delta(\delta+1)} \sum_{i=1}^{I} \sum_{k=1}^{K} p_{i \bullet k} \left[\left(\frac{p_{i \bullet k}}{p_{i \bullet \bullet} p_{\bullet \bullet k}} \right)^{\delta} - 1 \right]$$

$$= \frac{2n}{\delta(\delta+1)} \sum_{j=1}^{J} \sum_{k=1}^{K} p_{\bullet jk} \left[\left(\frac{p_{\bullet jk}}{p_{\bullet j \bullet} p_{\bullet \bullet k}} \right)^{\delta} - 1 \right] + \frac{2n}{\delta(\delta+1)} \sum_{i=1}^{I} \sum_{j=1}^{K} \sum_{k=1}^{K} p_{ijk} \left[\left(\frac{p_{ijk}}{\alpha p_{i \bullet \bullet} p_{\bullet j \bullet} p_{\bullet \bullet k}} \right)^{\delta} - 1 \right]$$

$$= CR_{IJ}(\delta) + CR_{IK}(\delta) + CR_{IJK}(\delta) + CR_{IJK}(\delta)$$

Cressie-Read family of divergence statistics for only the **row** and **column** variables (aggregating across the **tube** variable)

Partitioning the Family of Divergence Statistics

Lombardo & Beh (2022) showed that the three-way Cressie-Read divergence statistic can be partitioned as follows

$$CR(\delta) = \frac{2n}{\delta(\delta+1)} \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} p_{ijk} \left[\left(\frac{p_{ijk}}{p_{i \bullet \bullet} p_{\bullet j \bullet} p_{\bullet \bullet \star}} \right)^{\delta} - 1 \right]$$
$$= \frac{2n}{\delta(\delta+1)} \sum_{i=1}^{J} \sum_{j=1}^{J} p_{ij \bullet} \left[\left(\frac{p_{ijk}}{p_{i \bullet \bullet} p_{\bullet j \bullet}} \right)^{\delta} - 1 \right] + \frac{2n}{\delta(\delta+1)} \sum_{i=1}^{I} \sum_{k=1}^{K} p_{i \bullet k} \left[\left(\frac{p_{ijk}}{p_{i \bullet \bullet} p_{\bullet \bullet \star}} \right)^{\delta} - 1 \right]$$
$$= \frac{2n}{\delta(\delta+1)} \sum_{j=1}^{J} \sum_{k=1}^{K} p_{\bullet jk} \left[\left(\frac{p_{\bullet jk}}{p_{\bullet j \bullet} p_{\bullet \bullet \star}} \right)^{\delta} - 1 \right] + \frac{2n}{\delta(\delta+1)} \sum_{i=1}^{J} \sum_{j=1}^{K} p_{ijk} \left[\left(\frac{p_{ijk}}{\alpha p_{i \bullet \bullet} p_{\bullet j \bullet} p_{\bullet \bullet \star}} \right)^{\delta} - 1 \right]$$
$$= CR_{IJ}(\delta) + CR_{IK}(\delta) + CR_{IJK}(\delta) + CR_{IJK}(\delta)$$

Cressie-Read family of divergence statistics for only the row and tube variables (aggregating across the column variable)

Partitioning the Family of Divergence Statistics

Lombardo & Beh (2022) showed that the three-way Cressie-Read divergence statistic can be partitioned as follows

CF

Multi-Way Correspondence Analysis

49

Multi-Way Correspondence Analysis

50

$$\begin{aligned} \mathsf{R}(\delta) &= \frac{2n}{\delta(\delta+1)} \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} \mathsf{p}_{ijk} \left[\left(\frac{\mathsf{p}_{ijk}}{\mathsf{p}_{i\bullet\bullet}\mathsf{p}_{\bullet j\bullet}\mathsf{p}_{\bullet\bullet k}} \right)^{\delta} - 1 \right] \\ &= \frac{2n}{\delta(\delta+1)} \sum_{i=1}^{J} \sum_{j=1}^{J} \mathsf{p}_{ij\bullet} \left[\left(\frac{\mathsf{p}_{ijk}}{\mathsf{p}_{i\bullet\bullet}\mathsf{p}_{\bullet j\bullet}} \right)^{\delta} - 1 \right] + \frac{2n}{\delta(\delta+1)} \sum_{i=1}^{I} \sum_{k=1}^{K} \mathsf{p}_{i\bullet k} \left[\left(\frac{\mathsf{p}_{i\bullet k}}{\mathsf{p}_{i\bullet\bullet}\mathsf{p}_{\bullet \bullet k}} \right)^{\delta} - 1 \right] \\ &= \frac{2n}{\delta(\delta+1)} \sum_{j=1}^{J} \sum_{k=1}^{K} \mathsf{p}_{\bullet jk} \left[\left(\frac{\mathsf{p}_{\bullet jk}}{\mathsf{p}_{\bullet j\bullet}\mathsf{p}_{\bullet \bullet k}} \right)^{\delta} - 1 \right] + \frac{2n}{\delta(\delta+1)} \sum_{i=1}^{I} \sum_{j=1}^{L} \sum_{k=1}^{K} \mathsf{p}_{ijk} \left[\left(\frac{\mathsf{p}_{ijk}}{\alpha\mathsf{p}_{i\bullet}\mathsf{p}_{\bullet j\bullet}\mathsf{p}_{\bullet \bullet k}} \right)^{\delta} - 1 \right] \\ &= \mathsf{CR}_{IJ}(\delta) + \mathsf{CR}_{IK}(\delta) + \frac{\mathsf{CR}_{IK}(\delta)}{\mathsf{CR}_{IK}(\delta)} + \mathsf{CR}_{IJK}(\delta) \end{aligned}$$

Cressie-Read family of divergence statistics for only the column and tube variables (aggregating across the row variable)

Partitioning the Family of Divergence Statistics

Lombardo & Beh (2022) showed that the three-way Cressie-Read divergence statistic can be partitioned as follows

$$CR(\delta) = \frac{2n}{\delta(\delta+1)} \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} p_{ijk} \left[\left(\frac{p_{ijk}}{p_{i \bullet \bullet} p_{\bullet \bullet} p_{\bullet} p_{\bullet \bullet} p_{\bullet}} \right)^{\delta} - 1 \right]$$
$$= \frac{2n}{\delta(\delta+1)} \sum_{i=1}^{J} \sum_{j=1}^{J} p_{ij \bullet} \left[\left(\frac{p_{ijk}}{p_{i \bullet \bullet} p_{\bullet \bullet} p_{\bullet}} \right)^{\delta} - 1 \right] + \frac{2n}{\delta(\delta+1)} \sum_{i=1}^{I} \sum_{k=1}^{K} p_{i \bullet k} \left[\left(\frac{p_{i \bullet k}}{p_{i \bullet \bullet} p_{\bullet \bullet} p_{\bullet}} \right)^{\delta} - 1 \right]$$
$$= \frac{2n}{\delta(\delta+1)} \sum_{j=1}^{J} \sum_{k=1}^{K} p_{\bullet jk} \left[\left(\frac{p_{\bullet jk}}{p_{\bullet \bullet} p_{\bullet \bullet} p_{\bullet}} \right)^{\delta} - 1 \right] + \frac{2n}{\delta(\delta+1)} \sum_{i=1}^{J} \sum_{j=1}^{K} p_{ijk} \left[\left(\frac{p_{ijk}}{\alpha p_{i \bullet \bullet} p_{\bullet} p_{\bullet \bullet} p_{\bullet}} \right)^{\delta} - 1 \right]$$
$$= CR_{IJ}(\delta) + CR_{IK}(\delta) + CR_{JK}(\delta) + CR_{IJK}(\delta)$$

Multi-Way Correspondence Analysis

51

Cressie-Read family of divergence statistics for all **three** the variables (jointly)

For provide the family of Divergence Statistics Example 1: When $\delta = 1$ $CR(1) = CR_{IJ}(1) + CR_{IK}(1) + CR_{IJK}(1) + CR_{IJK}(1)$ is the same as $X^2 = X_{IJ}^2 + X_{IK}^2 + X_{JK}^2 + X_{IJK}^2$ (see Part III slide 29) Example 2: When $\delta = 0$ $CR(0) = CR_{IJ}(0) + CR_{IK}(0) + CR_{IJK}(0) + CR_{IJK}(0)$ is the partition of the three-way *likelihood ratio* statistic such that $G^2 = G_{IJ}^2 + G_{IK}^2 + G_{JK}^2 + G_{IJK}^2$

Partitioning the Family of Divergence Statistics

For the same as $X^{2} = X_{IJ}^{2} + CR_{IK}(1) + CR_{IK}(1) + CR_{IJK}(1) + CR_{IJK}(1)$ is the same as $X^{2} = X_{IJ}^{2} + X_{IK}^{2} + X_{JK}^{2} + X_{IJK}^{2} \quad (\text{see Part III slide 29})$ Example 4: When $\delta = 2/3$ $CR(\frac{2}{3}) = CR_{IJ}(\frac{2}{3}) + CR_{IK}(\frac{2}{3}) + CR_{IJK}(\frac{2}{3}) + CR_{IJK}(\frac{2}{3})$ is the partition of the three-way *Cressie-Read* statistic such that $CR = CR_{IJ} + CR_{IK} + CR_{JK} + CR_{IJK}$

Example: Sustainable Development Goals Data

The cross-classification of the three categorical variables (RES, BCA & GEO) that produce the $4 \times 4 \times 6$ contingency table . . .

Chi-squared test of independence:

- $X^2 = 290.035$ •
- A p-value < 0.001 •

Thus, a statistically significant ٠ association exists between at least two of the variables

RES		В	CA	
	(0, 8.13]	(8.13, 23.1]	(23.1, 49.7]	(49.7, 96.4]
Africa	BCA1	BCA2	BCA3	BCA4
(0, 34.5]RES1	1	0	4	8
(34.5, 53.7] RES2	0	2	4	19
(53.7, 80.7] RES3	3	2	1	4
(80.7, 100] RES4	1	1	0	1
America				
RES1	1	0	6	2
RES2	0	2	0	1
RES3	0	3	1	0
RES4	1	3	2	1
Asia				
RES1	5	1	2	0
RES2	6	2	3	1
RES3	5	3	3	3
RES4	4	2	0	0
Australia				
RES1	1	0	0	0
RES2	0	1	2	0
RES3	1	1	5	0
RES4	1	0	0	0
Carribean				
RES1	3	2	0	0
RES2	1	1	0	1
RES3	0	0	0	0
RES4	2	3	0	0
Europe				
RES1	1	0	0	0
RES2	0	0	1	0
RES3	0	7	5	0
RES4	3	11	7	3

Example: Sustainable Development Goals Data

	Pa	rtitioning Pearson's	Three-way	Statistic						
			\square			\square	\square			
sis		Component	X ² _{IJ}	X ² _{IK}	X ² _{JK}	X ² _{IJK}	X ²			
aly		Term	34.970	82.816	95.677	76.573	290.035			
An		<i>P</i> -value	< 0.001	< 0.001	< 0.001	0.002	< 0.001			
nce		% Contribution	12%	29%	33%	26%	100%			
nde						\square				
Correspo	ŀ	There is a statisticall variables	ally significant association between at least two of the							
lti-Way C	·	There is a statisticall variables	y significa	nt associatio	on between e	each pair o	f the three			
Mu	\cdot	There is a statistical	y significa	nt associatio	on between a	all three var	riables	but		
	•	The association is defollowed by RES &	ominated b BCA (29%	y the association (ation betwee	en BCA &	GEO (33%)		

Multi-Way Correspondence Analysis

Example: Sustainable Development Goals Data

Partitioning the Three-way Freeman-Tukey Statistic

						(
sis		Component	T _{IJ} ²	T_{IK}^2	T_{JK}^2		T _{IJK}	T ²	
alys		Term	35.112	83.340	92.421		39.619	250.491	
An		<i>P</i> -value	< 0.001	< 0.001	< 0.001		0.699	< 0.001	
nce		% Contribution	14%	33%	37%		16%	100%	
opu						C			
Correspo	• 7 v	here is a statistically ariables	y significar	nt associatio	n between	at le	east two	of the	
lti-Way (• 7 v	There is a statistically variables	y significar	nt associatio	n between	each	h pair o	f the three	
Мu	•	but the three-	way associa	ation is not	statistically	sig	nificant	(p-value =	= 0.699)
	•]	The association is sti 37%) followed by F	ill dominat RES & BCA	ed by the as A (33%)	sociation b	etwo	een BCA	A & GEO	

References			
Bibliographic Information	1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	 Beh, E. J. & Lombardo, R. (2014), <i>Correspondence Analysis: Theory, Methods and New Strategies</i>, Wiley. Beh, E. J. & Lombardo, R. (2021), <i>An Introduction to Correspondence Analysis</i>, Wiley. Bro, R. & Kiers, H. A. L. (2003), A new efficient method for determining the number of components in PARAFAC models, <i>Journal of Chemometrics</i>, 17, 274–286. Burt, C. (1950) The factorial analysis of qualitative data. <i>British Journal of Statistical Psychology</i>, 3, 166–185. Carrol, J. and Chang, J.J. (1970) Analysis of individual differences in multidimensional scaling via an <i>π</i>-way generalization of Eckart–Young decomposition. <i>Psychometrika</i>, 35, 283–319. D'Ambra, L., Amenta, P., Lombardo, L., Gallo, M. & Sarnacchiaro, P. (2004), Analisi statistica multivariate per la valutazione della patient satisfaction. In <i>Qualita e Valutazione delle Strutture Sanitarie</i> (eds A Pagano & G. Vittadini), Etas, Milano. Gray, L. N. & Williams, J. S. (1981), Goodman and Kruskal τ_b multiple and partial analogs. <i>Proceedings of the Social Statistics Section</i>, 10, 50–62. Harshman, R. A. (1970), Foundations of the PARAFAC procedure: models and conditions for an "explanatory" multi-modal factor analysis, <i>UCLA Working Papers in Phonetics</i>, 16, 1–84. Kiers, H. A. L. (2004), Bootstrap confidence intervals for three-way methods, <i>Journal of Chemometrics</i>, 18, 22–36. Kroonenberg, P. M. (1989), Singular value decomposition of interactions in three-way contingency tables. In <i>Multiway Data Analysis</i> (eds. R. Coppi and S. Bolasco), pp. 169–184. Elsevier Kroonenberg, P. M. (2008), <i>Applied Multiway Data Analysis</i>, Wiley. Lancaster, H. O. (1951), Complex contingency tables treated by the partition of χ², <i>Journal of Statistical Planning and Inference</i>, 141, 1789–1799. Lombardo, R., Beh, E. J. & Kroonenberg, P. M. (2021), Symmetrical and non-symmetrical variants of three-way correspondence analysis for ordered variables, <i>Statistical </i>	
66]		

	Appendix A: Indicator Matrix
R Code	<pre>indicator.exe <- function(N) { for (ij in 1:din(b)[1]) { for (ij in 1:din(b)[1]) { cet <- cet <- top for (ij in 1:din(b)[1]) { caaa <- p = set (eaaaa, b[jj, ij], sep = ",") { j cot <- top for (ij in 1:din(b)[1]) { caaa <- p = cet (eaaa, b[jj, ij], sep = ",") { cet <- top for (ij in 1:din(b)[1]) { cet <- top for (ij in 1:din(b)[1], { cet <- top for (ij in 1:din(b)[1], { caaa <- c i cet <- top for (ij in 1:din(b)[1], { cet <- top for (ij in 1:din(b)], j, j, sep = ",") { j cet <- top for (ij in 1:din(b)], set (cet met = m = top for (ij in 1:din(b)], for (ij in 1:din(b)], for (ij in 1:din(b)], fo</pre>
68	Z # The indicator matrix of size n x neats

