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Consider

• A random sample of n individuals/units from which two categorical 

variables are considered

• Two categorical variables, A and B, are cross-classified to form a two-

way contingency table, 𝐍.

• Let variable A consist of I categories

• Let variable B consist of J categories

• 𝐍 is of size I × J

• Denote nij as the (i, j)th cell 

frequency

• Denote ni• as the i’th row 

marginal frequency

• Denote n•j as the j’th column 

marginal frequency

We shall consider the case of more than two categorical variables later.
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Lambert Adolphe Jacques Quetelet

(1796-1874)

His studies on social aspects in France 

involved the construction of what we now 

know to be the contingency table. His 

analysis of these tables was, by current 

standards, more than superficial, but he did 

set up the ground word for data analysis that 

Galton (who developed linear regression 

analysis) and Pearson (who is a pioneer of 

categorical data analysis) continued on with. 

Their work lives on even today.

What follows is a Quetelet’s table, although 

he did not refer to it as a contingency table.

One of the first serious categorical data analysts was
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Quetelet’s Contingency Tables
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He not only speaks of the condition of man at the time, but he also 

hints at the possibility of being able to model such behaviour.

Quetelet’s Contingency Tables
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Quetelet (1842, p. 6)

Symmetric Association

• Francis Galton

• Karl Pearson

• Pearson’s Chi-squared Statistic
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Consider two categorical variables, A and B. The simplest quested of such 

variables is whether they are associated with each other. In a very simple form, 

we address the hypotheses

To help address these hypotheses, we “compare” the observed cell values with 

the cell values that we would expect to get if the rows and columns are 

independent. 

For the (i, j)th cell, the expected cell frequency (if independence were observed) 

is

or more formally

H0: A and B are NOT associated (independent)

H1: A and B are associated

Francis Galton’s “Fingerprints”
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ni•n•j

n

In fact, Galton (1892, p. 174) was the first (known) to state 

this result. Part of his work involved determining the 

association of fingerprint characteristics of 105 fraternal (or 

dizygotic) male twins. One male twin was “earmarked” as 

twin A and his brother was twin B. 

Francis Galton 

(1822 – 1911)

Francis Galton’s “Fingerprints”
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ni•n•j
n

Galton (1892, pp. 175 – 176) said

“The squares that run diagonally from the top at the left, to the bottom at the right, 

contain the double events, and it is with these that we are now concerned. Are 

entries in those squares larger or not than the randoms . . . The values of 10x19, 

68x61, 27x25, all divided by 105?”
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Pearson considered a more general setting than what 

Galton did and compared all observed cell frequencies 

with their expected values (under independence) – not 

just the diagonal elements. 

Pearson’s approach was to consider looking at the 

difference between the two:

nij −
ni•n•j

n
or, equivalently,

pij − pi•p•j

Note: Pearson used the word compartment while we now use the word cell

Pearson referred to these differences as the cell’s contingency. 

If all of the contingency’s are zero then there is complete independence 

between the two categorical variables.

Karl Pearson
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Karl Pearson 

(1857 – 1936)

Suppose we consider the Galton expectations and tie this in with Pearson’s 

idea of a contingency. The hypothesis

can be more formally expressed by

H0: nij =
ni•n•j

n

H1: nij ≠
ni•n•j

n

H0: A and B are NOT associated (independent)

H1: A and B are associated

Quantitatively, Pearson proposed the following statistic as a single measure of 

the strength of the association between the rows and columns of the table

X2 = ෍

i=1

I

෍

j=1

J nij −
ni•n•j
n

2

ni•n•j
n

Here X2 is a chi-squared random 

variable with I − 1 J− 1
degrees of freedom.

The Statistic
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Several more succinct expressions of this statistic can be derived.

For example . . . 

Suppose we express the above null and alternative hypothesis as

H0: pij = pi•p•j
H1 : pij ≠ pi•p•j

Then an equivalent expression for Pearson’s chi-squared statistic is

X2 = n෍

i=1

I

෍

j=1

J
pij − pi•p•j

2

pi•p•j

Here X2 is also a chi-squared random variable with I − 1 J− 1 degrees of 

freedom.

The Statistic
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• It may seem surprising at first that, in its day, while the classic variance 

and least squares was known, why didn’t Pearson simply consider the sum-

of-squares of the contingency’s:

෍

i=1

I

෍

j=1

J

nij −
ni•n•j

n

2

? ?

To answer this question, suppose we consider nij to be a Poisson random 

variable so that

E nij = Var nij =
ni•n•j

n

Then normalising the cells leads to, asymptotically,

Zij =
nij −

ni•n•j
n

ni•n•j
n

~N 0, 1

of which the sum-of-squares is his chi-squared statistic (we’ll return back to this later).

If there are issues 

concerning the 

stability of the 

expectation/variance 

equality there are ways 

in which we can deal 

with this.

Some Properties
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• The chi-squared statistic remains unchanged even if the rows and/or 

columns are interchanged, or swapped (Pearson was aware of this)

• The magnitude of the chi-squared statistic is dependent on the sample size, 

n, selected. Therefore, for a large enough sample size, it is possible to 

ALWAYS conclude that  there exists a statistically significant association 

between the rows and columns, even if the association is very weak.

• In fact 

0 ≤ X2 ≤ n min I, J − 1

• So 

o doubling the sample size doubles X2

o Increasing the sample size means there will ALWAYS be an n that leads 

to a statistically significant association

Some Properties
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Pearson’s phi-squared statistic 

One obvious way of dealing with the impact of the sample size on Pearson’s 

chi-squared statistic is to simply divide it by n:

f2 =
X2

n
=෍

i=1

I

෍

j=1

J
pij − pi•p•j

2

pi•p•j

Pearson (1904, p. 6) referred to this as the mean-squared contingency. These 

days its also called Pearson’s phi-squared statistic and

• f2 ranges from 0 (complete independence) to min I, J − 1(complete 

dependence)

• its magnitude is independent of the sample size

On Dealing with the Sample Size
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One may derive a number of other measures of association based on Pearson’s 

contingency pij − pi•p•j.

Marcotorchino (1984) discussed a host of less well known measures for an  

I × J contingency table, including

B = n2෍

i=1

I

෍

j=1

J

pij − pi•p•j
2

J = n෍

i=1

I

෍

j=1

J

pij pij − pi•p•j
2

V = n2෍

i=1

I

෍

j=1

J

pij− pi•p•j pij + pi•p•j

Belson’s statistic

Jordan’s statistic

Variation of Squares

• They are all zero when the categorical variables are independent

• B and J are at least zero. V can be negative.

• There is no known distributional property of these measures

Other Contingency Based Measures
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There might indeed be a reason 

why the study of these has not 

continued

Example 2: Galton’s Fingerprint Data
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Value  MC.P-value

Chi-sq       11.1699       0.031

A.chi-sq     18.8401       0.096

Belson       48.0305       0.195

Jordan        0.0496       0.275

Var.sq 146.9029       0.113

Phi2          0.1064       0.031
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Asymmetric Association

• Goodman-Kruskal lambda Index

• Goodman-Kruskal tau Index

Treat the categorical variables as being asymmetrically associated…..

For example,

“How does the number of years of occupational 

exposure to asbestos impact upon the workers 

diagnosed level of asbestosis?”

Asbestosis

Grade

Occupational 

Exposure

predictor

variable

response

variable

We now explore two indices that can be used to quantify the asymmetric association 

between two categorical variables 

A Definition
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So . . . 

We can’t (shouldn’t) use the 

Pearson chi-squared statistic 

(although in many practical and 

theoretical studies of contingency 

tables researchers do)

If πij = 0 the j’th column is not a good 

predictor of the i’th row category

A Definition
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• Consider two independent events A and B. Then

P AȁB = P A → P AȁB − P A = 0

For a contingency table, given the columns, how do the rows compare?

πij =
pij

p•j
− pi•

Goodman-Kruskal lambda Index
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• There are various measures of asymmetric association discussed by Goodman 

& Kruskal (1954). For A|B (predicting the rows given the columns)

– Goodman-Kruskal lambda index

λAȁB =
σj=1
J pmj − pm•

1 − pm•

where pmj = max pmj (largest proportion in the observed level j) and pm• = max pi•

So . . . 

We can’t (shouldn’t) use the 

Pearson chi-squared statistic 

(although in many practical and 

theoretical studies of contingency 

tables researchers do)
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Goodman-Kruskal tau Index
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• There are various measures of asymmetric association discussed by 

Goodman & Kruskal (1954). For A|B (predicting the rows given the columns)

– Goodman-Kruskal tau index

τAȁB =

σi=1
I σj=1

J pij
2

p•j
− σi=1

I pi•
2

1 − σi=1
I pi•

2

So . . . 

We can’t (shouldn’t) use the 

Pearson chi-squared statistic 

(although in many practical and 

theoretical studies of contingency 

tables researchers do)

• Goodman-Kruskal tau index

o as a weighted sum of squares of the centred conditional proportions

τAȁB =
1

1 − σi=1
I pi•

2 ෍

i=1

I

෍

j=1

J

p•j
pij

p•j
− pi•

2

• PROPERTIES

o 0 ≤ τAȁB ≤1

o Light & Margolin (1971) showed that

C = n − 1 I − 1 τAȁB~X I−1 J−1
2

o Agresti (1990, p.25) notes that low values of tau do not necessarily mean “low” 

levels of association, since tau tends to take smaller values as the number of 

categories increase.

The Index
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Simple (Symmetrical)
Correspondence Analysis

• Benzécri, Greenacre 

• Profiles Reciprocal Averaging and the Triplet

• Singular Value Decomposition 

• Correspondence Plot and the Biplot

Jean-Paul Benzécri

Paris, 2011

The 1960’s saw the advances in categorical data 

analysis take on a geometric form with the 

development of correspondence analysis.

The “father” of modern day correspondence 

analysis is French linguist Jean-Paul Benzecri, and 

with his team of researchers, developed its 

foundations at the Mathematical Statistics 

Laboratory, Faculty of Science in Paris, France.

As a result the method of l’analyse des correspondances, as coined 

by Benzécri, is very popular in France. The popularity of 

correspondence analysis in France resulted in a journal dedicated to 

the development and application of the technique as well as methods 

of classification, Cahiers de l’Analyse des Données, founded by 

Benzecri (1976 – 1997) . . . http://www.numdam.org/journals/CAD/

Origins: Jean-Paul Benzécri
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http://www.numdam.org/journals/CAD/
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• Michael Greenacre

Universitat Pompeu Fabra, Barcelona, Spain

• Former student of Benzécri

o Greenacre, M. J. (1978), Quelques methodes objectives de representation graphique d'un tableau de 

donnes, Unpublished PhD thesis, Universite Pierre et Marie Curie, Paris

 Translation: Some objective methods of graphical display of a data matrix

Origins: Michael J. Greenacre
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(1984) (2017)(1994) (1998) (2014)(2006)

You are also invited to consider Beh and Lombardo (2012, 2019) who provide an extensive 

bibliography on the history and development of correspondence analysis.

• Michael Greenacre

Universitat Pompeu Fabra, Barcelona, Spain

• Former student of Benzécri

o Greenacre, M. J. (1978), Quelques methodes objectives de representation graphique d'un tableau de 

donnes, Unpublished PhD thesis, Universite Pierre et Marie Curie, Paris

 Translation: Some objective methods of graphical display of a data matrix

Origins: Michael J. Greenacre
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Dimension Reduction
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Suppose we have following two row categories with five entries each (so 

there are five categories)

For the first row – “Row 1” – it has a total of 30 classifications, while for the 

second its 300. While the totals of each row are different, their relative 

proportions are identical:

This array of relative cell frequencies is referred to as a profile.

Col 1 Col 2 Col 3 Col 4 Col 5 Total

Row 1 2 4 6 8 10 30

Row 2 20 40 60 80 100 300

. . . . . . . . . . . . . . . . . . . . .

1

15,

2

15,

3

15,

4

15,

5

15,

Profiles
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In the more general case, for the i’th row profile is

ni1
ni•

,
ni2
ni•

, ⋯ ,
nij

ni•
, ⋯ ,

niJ

ni•
=

pi1
pi•

,
pi2
pi•

, ⋯ ,
pij

pi•
, ⋯ ,

piJ

pi•

Profiles
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In the more general case, for the i’th row profile is

ni1
ni•

,
ni2
ni•

, ⋯ ,
nij

ni•
, ⋯ ,

niJ

ni•
=

pi1
pi•

,
pi2
pi•

, ⋯ ,
pij

pi•
, ⋯ ,

piJ

pi•

n1j

n•j
,
n2j

n•j
, ⋯ ,

nij

n•j
, ⋯ ,

nIj

n•j
=

p1j

p•j
,
p2j

p•j
, ⋯ ,

pij

p•j
, ⋯ ,

pIj

p•j

Similarly, the j’th column profile is

Profiles
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If there is no association (independence) between the row and column 

variables then these profiles simplify to

n•1
n
,
n•2
n
, ⋯ ,

n•j

n
, ⋯ ,

n•J

n
= p•1, p•2, ⋯ , p•j, ⋯ , p•J

and

n1•
n
,
n2•
n
, ⋯ ,

ni•
n
, ⋯ ,

nI•
n

= p1•, p2•, ⋯ , pi• , ⋯ , pI•

respectively.

This suggests we may alternatively consider the centred row and centred 

column profiles as a means of detecting any departures from independence.

Profiles
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The i’th centred row profile element is

pi1
pi•

− p•1,
pi2
pi•

− p•2 … ,
piJ

pi•
− p•J

Note these centred row profiles are centred around zero so that:

෍

j=1

J
pij

pi•
− p•j =

1

pi•
෍

j=1

J

pij −෍

j=1

J

p•j

=
1

pi•
pi• − 1

= 0

Centred Row Profiles
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The j’th centred column profile element is

p1j

p•j
− p1•,

p2j

p•j
− p2• … ,

pIj

p•j
− pI•

Note these centred column profiles are centred around zero so that:

෍

i=1

I
pij

p•j
− pi• =

1

p•j
෍

i=1

J

pij −෍

i=1

I

p•j

=
1

p•j
p•j − 1

= 0

Centred Column Profiles
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> solve(dI)%*%P - rep(1, times= 5)%*%t(apply(P, 2, sum)) 

None     Grade 1    Grade 2       Grade 3 

[1,]  0.38118205 -0.22361714 -0.11280215 -0.044762757 

[2,]  0.04459504  0.08922316 -0.08905545 -0.044762757 

[3,] -0.24204444  0.12688207  0.10797707  0.007185295 

[4,] -0.38590573  0.19810981  0.13977517  0.048020748 

[5,] -0.45692047 -0.03840719  0.30868545  0.186642201 

> 

> solve(dJ)%*%t(P) - rep(1, times= 4)%*%t(apply(P, 1, sum)) 

0-9       10-19       20-29      30-39          40+ 

[1,]  0.2293722  0.02939395 -0.03241291 -0.1302012 -0.09615196 

[2,] -0.2113976  0.09239229  0.02669377  0.1050090 -0.01269746 

[3,] -0.3097583 -0.26787313  0.06598599  0.2152094  0.29643603 

[4,] -0.3097583 -0.33930170  0.01106535  0.1863205  0.45167413

> 

Centred Row 

Profiles

Centred Column 

Profiles

Centred Row & Column Profile Matrices

Example: Sekiloff’s Asbestos Data
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The key objective is to find the set of row scores

𝐚 = a1, a2,… , ai, … , aI
T

and the set of column scores

𝐛 = b1, b2, … , bj , … , bJ
T

so that the correlation between 𝐚 and 𝐛 is maximised.

These scores can be found using a technique called reciprocal averaging (also 

dual scaling, optimal scaling, homogeneity analysis and other terms) and is 

related to canonical correlation analysis.

We won’t go into any great detail.

We could treat ordinal categorical variables by imposing a constraint that 

a1 < a2 < ⋯ < aI

(for increasing row categories, say) but we won’t do that here.

Scoring the Categories
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But we do impose the property that 

෍

i=1

I

pi•ai = 0 ෍

i=1

I

pi•ai
2 = 1

෍

j=1

J

p•jbj = 0 ෍

j=1

J

p•jbj
2 = 1

To ensure we get a solution (which we will always do). 

The Triplet
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The correlation between 𝐚 and 𝐛 is 

λ =෍

i=1

I

෍

j=1

J

pijaibj

Note: we are only talking about a one-dimensional solution for the row and 

column scores. Soon we will turn our attention to a multi-dimensional solution.



19/07/2022

19

Years of exposure:

• “20 – 29” and “30 – 39” appear similarly 

distributed 

• “0 – 9” is distributed differently to “40+”

• “10 – 19” doesn’t vary much when 

compared with independence

across the grades of asbestosis severity

Asbestosis severity levels

• “Grade 2” and “Grade 3” appear 

similarly distributed 

• “None” is distributed differently to 

“Grade 2” and “Grade 3”

across the different years of exposure

Example: Selikoff’s Asbestos Data
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Example: Selikoff’s Asbestos Data

Cobweb Diagram

Using the R function cobweb() that appears in the Appendix of Upton (2017)

By using standardised residuals

• Black line indicates positive

association

• Grey line indicates a negative

association. 

• Thick lines indicate a strong 

association*.

• Thin lines weak association*.

*Positive and negative association
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Correspondence analysis may be performed using the generalised singular 

value decomposition (GSVD) of the matrix of Pearson residuals

For rectangular matrix of Pearson residuals, 𝐙, 

𝐙 = 𝐃I
−1 𝐏− 𝐫 𝐜T 𝐃J

−1

the GSVD of 𝐙 is

𝐙 = 𝐀𝐃λ𝐁
T

where

𝐀T𝐃I𝐀 = 𝐈M 𝐁T𝐃J𝐁 = 𝐈M
and

𝐫 = p1•, p2•,… , pI•
T

𝐜 = p•1, p•2, … , p•J
TS
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Generalised Singular Value Decomposition

Note that the i, j th element of 𝐙 is Zij =
pij − pi•p•j

pi•p•j

Correspondence analysis may be performed using the generalised singular 

value decomposition (GSVD) of the matrix of Pearson residuals

For rectangular matrix of Pearson residuals, 𝐙, 

𝐙 = 𝐃I
−1 𝐏− 𝐫 𝐜T 𝐃J

−1

the GSVD of 𝐙 is

𝐙 = 𝐀𝐃λ𝐁
T

where

𝐀T𝐃I𝐀 = 𝐈M 𝐁T𝐃J𝐁 = 𝐈M
while

𝐃λ = diag λ1, λ2, … , λM

contains elements that are the singular values of 𝐙 so that

ϕ2 =
X2

n
= ෍

m=1

M

λm
2
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Generalised Singular Value Decomposition
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Suppose we consider the left singular vectors which are the scores for the row 

categories

𝐀 =

a11 a12 ⋯ a1m ⋯ a1M
a21 a22 ⋯ a2m ⋯ a2M
⋮ ⋮ ⋮ ⋮
ai1 ai2 ⋯ aim ⋯ aiM
⋮ ⋮ ⋮ ⋮
aI1 aI2 ⋯ aIm ⋯ aIM

The i’th row of 𝐀 can be used as the coordinate of the i’th row category in an 

M = min I, J − 1 dimensional space

These are referred to as row standard coordinates

𝐅 = 𝐀 ⇒ fim = aim
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Standard Coordinates
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Standard Coordinates

Suppose we consider the right singular vectors which are the scores for the 

column categories

𝐁 =

b11 b12 ⋯ b1m ⋯ b1M
b21 b22 ⋯ b2m ⋯ b2M
⋮ ⋮ ⋮ ⋮
bj1 bj2 ⋯ bjm ⋯ bjM
⋮ ⋮ ⋮ ⋮
bJ1 bJ2 ⋯ bJm ⋯ bJM

The j’th column of 𝐁 can be used as the coordinate of the j’th column category 

in an M = min I, J − 1 dimensional space.

These are referred to as column standard coordinates

𝐆 = 𝐁 ⇒ gjm = bjm
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We can graphically depict the association between the row and column 

categories by considering the following columns of the following matrices of 

coordinates

෨𝐅 = 𝐀𝐃λ (Row Principal Coordinates)

෩𝐆 = 𝐁𝐃λ (Column Principal Coordinates)

These are referred to as principal coordinates.

Note that 

• ෨𝐅 is an I × M column matrix ⇒ ሚfim = aimλm is the (i, m)’th value

– is the principal coordinate of the i’th row along the m’th dimension of the plot

• ෩𝐆 is a J × M column matrix ⇒ ෤gjm = bjmλm is the (j, m)’th value

– is the principal coordinate of the j’th column along the m’th dimension of the plot
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Principal Coordinates

The technique used to obtain this graphical 

summary of the association between the categorical 

variables is called correspondence analysis. 

This plot is commonly referred to as a 

correspondence plot.

An M-dimensional plot is commonly 

called an optimal correspondence plot
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Example: Selikoff’s Asbestos Data
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> ca.out <- CAvariants(asbestos)

> plot(ca.out, plottype = "classic")

RESULTS for CA Correspondence Analysis:

Data Table:

None Grade 1 Grade 2 Grade 3

0-9    310      36       0       0

10-19  212     158       9       0

20-29   21      35      17       4

30-39   25     102      49      18

40+      7      35      51      28

.

.

.

Inertias, percent inertias and cumulative percent 

inertias of the row space

inertia inertiapc cuminertiapc

1   0.489     84.22        84.22

2   0.089     15.35        99.57

3   0.003      0.43       100.00

4   0.000      0.00       100.00

.

.

.

Inertia values = Eigenvalues

Explained inertia of each axis => 

contribution of each axis to chi-squared

Cumulative contribution of each axis 

to chi-squared

First axis: 84.2%, 

Second axis: 15.4%

One-dimension : 84.22%, 

Two-dimensions: 99.57%

Three-dimensions: 100.00%
(optimal correspondence plot)

X2/n = 0.581
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Example: Selikoff’s Asbestos Data
S

im
p

le
 C

o
rr

es
p

o
n

d
en

ce
 A

n
al

y
si

s

46

*

*

*
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Grade 2

Grade 3

• Less than 10 years of occupational exposure and no asbestosis are associated with each other

• Mild asbestosis is associated with at least 20 years of occupational exposure to asbestos

• The more severe grades of asbestosis are associated with at least 40 years of occupational 

exposure to asbestos

Example: Selikoff’s Asbestos Data
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dI
2 i, i′ = ෍

j=1

J
1

p•j

pij

pi•
−
pi′j

pi′•

2

= ෍

j=1

J
1

p•j

pij

pi•
− p•j −

pi′j

pi′•
− p•j

2

= ෍

m=1

M

ሚfim − ሚfi′m
2

Distance between two row points when in principal coordinates

Cannot measure the distance between a row point and a column point
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Example: Selikoff’s Asbestos Data

We can graphically depict the association between the row and column 

categories by considering the following matrices of coordinate

• ෨𝐅 = 𝐀𝐃λ ⇒ ሚfim = aimλm (Row Principal Coordinates)

• 𝐆 = 𝐁 ⇒ gjm = bjm (Column Standard Coordinates)

These are referred to as row (isometric) biplot coordinates.

Similarly,  for the column (isometric) biplot coordinates:

• F= 𝐀 ⇒ fim = aim (Row Standard Coordinates)

• ෩𝐆 = 𝐁𝐃λ ⇒ ෤gjm = bjm λm (Column Principal Coordinates)
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Biplot Coordinates
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> ris <- CAvariants(asbestos, catype = "CA")

> plot(ris, plottype = "biplot", biptype = "row", scaleplot = 2)
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Example: Selikoff’s Asbestos Data

Row isometric 

biplot

• 0 – 9yrs of exposure strongly

associated with no asbestosis

• 10-19yrs of exposure equally 

likely to be associated with no 

or lowest grade asbestosis

• 20 – 39 years of exposure 

associated with Grade 1 

asbestosis

• Most severe grade of 

asbestosis strongly linked to 

40+yrs of exposure

• Strong Association between 

Grade 3 and 40+yrs exposure

> ris <- CAvariants(asbestos, catype = "CA")

> plot(ris, plottype = "biplot", biptype = "column", scaleplot = 2)
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Example: Selikoff’s Asbestos Data

• 0 – 9yrs of exposure strongly

associated with no asbestosis

• Grade 1 asbestosis equally 

linked to 10 – 39 years of 

exposure to asbestos fibres

• 20 – 29yrs and 30-39 yrs of 

exposure contributes equally 

to the association

• 40+yrs of exposure to 

asbestos fibres strongly

linked to Grade 2 asbestosis

• Strong Association between 

Grade 2 and 40+yrs exposure

Column isometric 

biplot
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Non-symmetrical 
Correspondence Analysis

Singular Value Decomposition 

and the

Quantification of the Variables

• Not only we can  quantify the asymmetric association between 

two categorical variables, but we can also visualise it.

• For two symmetrically associated variables, we discussed 

(simple) correspondence analysis

• For two asymmetrically associated variables, we now discuss 

non-symmetrical correspondence analysis (NSCA)

• For NSCA, the total inertia of a contingency table isn’t 

measured in terms of X2. Instead we consider either

o Goodman-Kruskal t index, or

o The C – statistic

Developed by Lauro & D’Ambra (1984) and D’Ambra & Lauro (1989). Discussed in 

detail by Kroonenberg & Lombardo (1999), Lombardo, Beh & D’Ambra (2007), Beh 

& Lombardo (2014, Chp 5; 2021, Chp 3), Lombardo, Kroonenberg & Beh (2016) and 

Lombardo, Beh & Kroonenberg (2021)

Prof Luigi D’Ambra

Uni of Naples

Prof Carlo Lauro

Uni of Naples



Origins: D’Ambra & Lauro
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Suppose we use the Goodman-Kruskal index, τAȁB, (“rows given columns”) as our 

measure of association. Recall that this implies that we are treating the column 

variable and row variable as our predictor and response variable, respectively.

The Goodman – Kruskal tau index is of the form

τAȁB =
1

1 − σi=1
I pi•

2
෍

i=1

I

෍

j=1

J

p•j
pij

p•j
− pi•

2

Since the term out front does not reflect the association captured (via the cell 

proportions) we can ignore it. Doing so, we have the statistic

τnum =෍

i=1

I

෍

j=1

J

p•j
pij

p•j
− pi•

2

=෍

i=1

I

෍

j=1

J

p•j
pij

p•j
− pi•

2

=෍

i=1

I

෍

j=1

J

෥πij
2

where τnum is the numerator of τAȁB, and

෥πij = p•j
pij

p•j
− pi• = πij p•j

Goodman & Krusal (1954)

A Recap
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In matrix, notation, πij is the (i, j)’th element of the matrix

𝚷 = 𝐃J
−1𝐏T − 𝟏J 𝐫

T

Then NSCA can be performed by applying a GSVD to 𝚷 such that

𝐃J
−1𝐏T − 𝟏J 𝐫

T = 𝐀𝐃λ𝐁
T

where

෩𝐀T෩𝐀 = 𝐈M 𝐁𝐓𝐃J𝐁 = 𝐈M

and 𝟏J is a vector of 1’s of length J so that

τnum = ෍

m=1

M

λm
2

Generalised Singular Value Decomposition
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• Principal Coordinates
෨𝐅 = ෩𝐀𝐃λ (Row Coordinates)

෩𝐆 = 𝐁𝐃λ (Column Coordinates)

• Column Biplot Coordinates

(Correct way to portray the asymmetric association of rows given columns)

• F= 𝐀 ⇒ fim = aim (Row Standard Coordinates)

• ෩𝐆 = 𝐁𝐃λ ⇒ ෤gjm = bjm λm (Column Principal Coordinates)

Principal & Biplot Coordinates
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Example: Selikoff’s Asbestos Data
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> ris <- CAvariants(asbestos, catype = "NSCA")

> plot(ris, plottype = "classic")

Given that a worker is exposed to 

asbestos fibres for

• Less than 10yrs they are unlikely 

to be diagnosed with asbestosis

• 10 – 19 yrs, they are likely to be 

diagnosed with no, or Grade 1

asbestosis

• 20 – 29yrs, they are likely to be 

diagnosed with any Grade of 

asbestosis

• 40+ yrs, they are likely to be 

diagnosed with the two most 

severe grades of asbestosis

Predictor = Grade (columns)

Response = Years (rows)

Classic plot
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Example: Selikoff’s Asbestos Data
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> ris <- CAvariants(asbestos, catype = "NSCA")

> plot(ris, plottype = "biplot", biptype = "column", scaleplot = 1.5)

Predictor = Grade (columns)

Response = Years (rows)

Column isometric 

biplot

Given that a worker is exposed to 

asbestos fibres for

• Less than 10yrs they are unlikely 

to be diagnosed with asbestosis

• 10 – 19 yrs, they are likely to be 

diagnosed with no, or Grade 1

asbestosis

• 20 – 29yrs, they are likely to be 

diagnosed with any Grade of 

asbestosis

• 40+ yrs, they are likely to be 

diagnosed with the two most 

severe grades of asbestosis

Ordinal Correspondence analysis

Bivariate Moment Decomposition 
and the

Quantification of the Variables
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When it comes to ordinal categorical variables many approaches force the 

scores to be ordered.

• For example, for increasingly ordered row categories, the elements of

𝐚 = a1, a2, … , ai, … , aI
T

are arranged so that they increase: a1 < a2,< ⋯ < ai < ⋯ < aI

• Schriever (1983), Ritov & Gilula (1993), Parsa & Smith (1993), Yang & Huh (1999)

Two problems:

• For an M-dimensional solution, which set of scores are re-arranged. 

Typically, the scores along the first dimension, but why not scores along 

other dimensions?

• Forcing the scores to be ordered forces the “correspondences” to behave in 

a certain way (a1 will ALWAYS be associated with b1)

Some Approaches
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When it comes to ordinal categorical variables many approaches force the 

scores to be ordered.

• For example, for increasingly ordered row categories, the elements of

𝐚 = a1, a2, … , ai, … , aI
T

are arranged so that they increase: a1 < a2,< ⋯ < ai < ⋯ < aI

• Schriever (1983), Ritov & Gilula (1993), Parsa & Smith (1993), Yang & Huh (1999)

Instead of doing this . . . 

• Don’t perform a SVD on the matrix of Pearson residuals and force the 

scores to be arranged in a particular way, instead . . . 

• Perform a bivariate moment decomposition on the matrix. Consists of

o Orthogonal polynomials instead of singular vectors

o Generalised correlations instead of singular values

Some Approaches
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Bivariate Moment Decomposition
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Rather than applying an SVD to Pearson’s residuals

𝐙 = 𝐃I
−1 𝐏− 𝐫 𝐜T 𝐃J

−1

apply a BMD so that

𝐙 = 𝓐𝐆𝓑T

where 𝓐T𝐃I𝓐 = 𝐈I and 𝓑T𝐃I𝓑 = 𝐈J. (More details: Beh 1997, Beh & Lombardo 2014).

Here,

• 𝓐 is the I × I − 1 matrix of row orthogonal polynomials

• 𝓑 is the J × J − 1 matrix of column orthogonal polynomials

• 𝐆 is a I − 1 × J − 1 rectangular matrix of generalised correlations with 

u, v ’th element Guv; u = 1, 2,… , I − 1 and v = 1, 2,… , J − 1

• The chi-squared statistic is (Lancaster, 1953)X2 = n෍

i=1

I−1

෍

j=1

J−1

Guv
2

We have a doubly ordered contingency table; ordinal row & column variable. 

Example: Selikoff’s Asbestos Data
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Features

• The row categories are increasing in order

• The column categories are increasing in order

• We shall use natural scores to reflect the order of both variables

• So that Pearson’s product moment correlation, and it’s non-linear variants, are 

used to assess the structure of the association
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Generalised Correlations
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The matrix 𝐆 is NOT diagonal. It contains generalised correlations with 

u, v ’th element

Guv =෍

i=1

I

෍

j=1

J

pijau i bv j

• G12 is the linear-by-quadratic correlation: association between row 

location differences and column dispersion differences

• G21 is the quadratic-by-linear correlation: association between row 

dispersion differences and column location differences

• G22 is the quadratic-by-quadratic correlation: association between row 

and column dispersion differences

• Higher order correlations tend to be small, harder to interpret

Note: Guv n is asymptotically standard normally distributed

More info: Rayner & Best (1996), Best & Rayner (1996), Rayner & Beh (2009)

Example: Selikoff’s Asbestos Data
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Interpretation

• Similar to nominal analysis but

• . . . generalised correlations:

o 𝐆𝟏𝟏 = 𝟎.𝟔𝟖𝟗
(Pearson’s product moment correlation)

o G12 = −0.085
(linear-by-quadratic)

o G21 = 0.024

Row Isometric Biplot

(Ordered Rows and Columns)

> ris = CAvariants(asbestos, catype = "DOCA")

> plot(ris, plottype = "biplot", biptype = "row", scaleplot = 1.5, invproj = F)
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Example: Selikoff’s Asbestos Data
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Row Isometric Biplot

(Ordered Rows and Columns)

> ris = CAvariants(asbestos, catype = "DOCA")

> plot(ris, plottype = "biplot", biptype = "row", scaleplot = 1.5)

Row Isometric Biplot

(Nominal Rows and Columns)

See Lombardo, Beh  and Kroonenberg (2016) for more on biplots for doubly and singly ordered analysis

Overdispersion and
Correspondence Analysis Strategies

Adjusted standardised residuals, 
generalised standardised residuals

and the 

Cressie-Read family of Divergence Statistics
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Correspondence analysis may alternatively, and equivalently, be performed by 

applying a SVD to the matrix of standardised residuals

𝐙 = 𝐃I
−1/2 𝐏− 𝐫 𝐜𝑇 𝐃J

−1/2

so that

𝐙 = ෩𝐀𝐃λ
෩𝐁T

where ෩𝐀T෩𝐀 = 𝐈M and ෩𝐁T෩𝐁 = 𝐈M.

The i, j ’th element of 𝐙 is the standardised residual

Zij =
pij − pi•p•j

pi•p•j

Standardised Residual
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Standardised Residual
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The standardised residuals is based on the assumption that

nij ~ Poisson npi•p•j
so that

E nij = Var nij =
ni•n•j

n

⇒ E n Zij = 0 Var n Zij = 1

. . . but . . .
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Haberman (1973) points out that, under independence

Var n Zij = 1− pi• 1 − p•j < 1

Agresti (2002, p. 81) comments that, for n Zij, 

“their asymptotic variances are less than 1.0, averaging           

[ 𝐼 − 1 𝐽 − 1 ]/(number of cells)”. 

Agresti (2002, pp. 588 – 589) provides a proof of this result.

Therefore, the standardised residual may be amended to yield

෨Zij =
pij − pi•p•j

pi•p•j 1 − pi• 1 − p•j

and is the adjusted standardised residual and are asymptotically standard 

normally distributed; see Beh (2012) for details on CA using ෨Zij.

Adjusted Standardised Residual
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For our  contingency table . . . 

over – dispersion

under – dispersion
E pij < Var pij

E pij > Var pij

Example
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For the generalised Poisson distribution, and a given θ, the 

expected value and variance of pij, by

E pij; θ =
pi•p•j

1 − θ
Var pij; θ =

pi•p•j

1 − θ 3
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• Recall . . . at the core of CA lies, in part, analysing those rows (and

columns) that are similar, or different. Done by comparing their profiles.

• The centred profile of the ith row category, say, is

pi1
pi•

− p•1,
pi2
pi•

− p•2, . . . ,
piJ

pi•
− p•𝐽

• But what happens if we consider a power transformation of the profiles:

pi1
pi•

δ

− p•1
δ ,

pi2
pi•

δ

− p•2
δ , . . . ,

piJ

pi•

δ

− p•J
δ

Power Transformations of Profiles
C

R
 F

am
il

y
 o

f 
D

iv
er

g
en

ce
 S

ta
ti

st
ic

s

71

• Greenacre (2009) proposed log-ratio analysis (LRA) – “power family 2”

o He confined δ ∈ 0, 1

o No link to any interpretable total inertia or distance measures were given

For some δ, a family of chi-squared statistics with (I – 1)(J – 1) degrees of 

freedom:

CR δ =
2n

δ δ+ 1
෍

i=1

I

෍

j=1

J

pij
pij

pi•p•j

δ

− 1

where δ ∈ −∞,∞ (Cressie & Read, 1984).

Read and Cressie (1988, p. 96) point out 

Departures involving large ratios of the alternative to null 

expected frequencies in one or two cells are best 

detected using large values of d, say d = 5

Cressie-Read Family of Divergence Statistics

C
R

 F
am

il
y

 o
f 

D
iv

er
g

en
ce

 S
ta

ti
st

ic
s

72



19/07/2022

37

Modified Likelihood Ratio Statistic

M2 = CR −1 = 2n෍

i=1

I

෍

j=1

J

pi•p•j ln
pi•p•j

pij

Likelihood Ratio Test Statistic

G2 = CR 0 = 2n෍

i=1

I

෍

j=1

J

pij ln
pij

pi•p•j

Modified Chi-Squared Statistic

N2 = CR −2 = n෍

i=1

I

෍

j=1

J
pij − pi•p•j

2

pij

The Freeman-Tukey Statistic

T2 = CR −
1

2
= 4n෍

i=1

I

෍

j=1

J

pij − pi•p•j
2

. . . are also chi-squared random variables with df = (I – 1)(J – 1)

Special Cases
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Read and Cressie (1988, pp. 94 – 95) show that 

CR δ ≈ CR∗ δ =
n

δ2
෍

i=1

I

෍

j=1

J
pij
δ − pi•p•j

δ 2

pi•p•j
2δ−1

= n෍

i=1

I

෍

j=1

J

pi•p•j
1

δ

pij

pi•p•j

δ

− 1

2

It can be shown that, exactly,

M2 = CR∗ 0 T2 = CR∗
1

2
X2 = CR∗ 1

The “Approximation”
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Read and Cressie (1988, pp. 94 – 95) show that 

CR δ ≈ CR∗ δ =
n

δ2
෍

i=1

I

෍

j=1

J
pij
δ − pi•p•j

δ 2

pi•p•j
2δ−1

= n෍

i=1

I

෍

j=1

J

pi•p•j
1

δ

pij

pi•p•j

δ

− 1

2

Read and Cressie (1988, p. 97) also suggested that δ = Τ2 3 works well for 

assessing deviations from independence giving the approximation to the 

Cressie-Read statistic

CR∗
2

3
=
9n

5
෍

i=1

I

෍

j=1

J

pi•p•j
pij

pi•p•j

2/3

− 1

2

The “Approximation”
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• Classical Correspondence Analysis

rij 1 =
pij − pi•p•j

pi•p•j
ϕ2 1 =

X2

n

• “Freeman-Tukey” Correspondence Analysis

rij
1

2
= 2 pij − pi•p•j ϕ2

1

2
=
T2

n

Beh & Lombardo (2022b) define the divergence residual of the i, j ’th cell our

contingency table by

rij δ =
1

δ

pij

pi•p•j

δ

− 1

for a given δ so that the total inertia is

ϕ2 δ =
CR∗ δ

n
= ෍

i=1

I

෍

j=1

J

rij
2 δ

Cuadras and Cuadras (2006) . . . Hellinger Distance Decomposition (HDD) method, 

Beh, Lombardo & Alberti (2018) . . . “Freeman-Tukey” CA (FTCA)

Divergence Residual
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Divergence Residual
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• Correspondence Analysis & M2?

rij 0 = pi•p•j ln
pij

pi∗p∗j
ϕ2 0 =

M2

n

• Correspondence Analysis & CR?

rij
2

3
=
3

2

pij

pi∗p∗j

Τ2 3

− 1 ϕ2
1

2
=
CR2

n

Greenacre (2009) – Log-ratio analysis (LRA)

Beh & Lombardo (2022b) define the divergence residual of the i, j ’th cell our

contingency table by

rij δ =
1

δ

pij

pi•p•j

δ

− 1

for a given δ so that the total inertia is

ϕ2 δ =
CR∗ δ

n
= ෍

i=1

I

෍

j=1

J

rij
2 δ

Prize/Country Physics Chemistry Economics Peace Medicine

USA 113 83 77 3 127

UK 28 30 6 0 32

Germany 24 40 1 0 17

France 17 11 2 1 10

Switzerland 10 7 0 0 8

Japan 10 7 0 0 4

Sweden 5 5 1 0 6

NA 3 5 0 0 7

Russia/USSR 11 2 1 0 1

Netherlands 6 1 1 0 2

Canada 3 3 0 0 3

Denmark 3 1 1 0 4

Italy 3 1 0 0 3

Austria 1 1 0 0 4

Belgium 1 1 0 0 4

Since 1901, the Nobel Prize has been awarded  in the fields of physics, physiology and 

medicine, peace, literature and economics. 

We examine the association between the Prize awarded (between 1901 and 2022) and 

the Country of affliation. Note: 

"NA" is not a country but represents recipients who, according to the website, are 

affiliated with an institution that is not centrally located in a single country

Source: https://www.nobelprize.org/prizes/facts/lists/affiliations.php

Example: Nobel Prize Data
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Example: Nobel Prize Data
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𝛅 = 𝟎

• Total Inertia:

Modified log-likelihood 

statistic=272.11

Log-ratio analysis

𝛅 = Τ𝟏 𝟐

• Total Inertia:

Freeman-Tukey statistic =142.73

HDD, or FTCA

Example: Nobel Prize Data
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𝛅 = 𝟐/𝟑

• Total Inertia:

Cressie-Read statistic=118.91

𝛅 = 𝟏

• Total Inertia:

Pearson’s statistic=106.19

Classical CA
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Keep in mind: Any value of δ can be considered for the Cressie-Read family of 

divergence statistics

Hellinger Distance Decomposition (HDD)

• Rao (1995) described the pro’s of the Hellinger distances δ = 1/2 over δ = 1

• Cuadras and Cuadras (2006) proposed Hellinger Distance Decomposition (HDD) in 

their “parametric correspondence analysis” approach

• HDD is equivalent to our approach when δ = 1/2 (Freeman – Tukey)

o Beh, Lombardo & Alberti (2018) linked the Hellinger distance to the Freeman-

Tukey statistic

• Cuadras and Cuadras (2006) 

o did not link their HDD to the Freeman-Tukey statistic

o only compared their HDD δ = 1/2 with CA δ = 1

Further Links
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Further Links
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Keep in mind: Any value of δ can be considered for the Cressie-Read family of 

divergence statistics

Log-Ratio Analysis

• Greenacre (2009) described two applications of power transformations in CA

o “Power family 1” – involves the transformation of the cells . . . pij
δ

o “Power family 2” – involves the transformation of profiles . . . Τpij pi•
δ

• Greenacre’s (2009) “Power family 2” . . . 

o examined differences in CA when δ = 0 (LRA) and δ = 1 (CA)

o LRA is equivalent to our technique when δ = 0

o did not examine what would happen for values of δ that lie outside of 0, 1

o did not link LRA to any measure of association (including M2)
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